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Energy level splittings in tropolone are calculated by using a semiclassical approach for tunneling in
multidimensional systems. A potential-energy surface that includes all 39 vibrational degrees of freedom was
constructed for the ground electronic state on the basis of ab initio results. Since the method incorporates
tunneling within standard trajectory simulations, the full-dimensional dynamics were explicitly treated to
provide a clear picture of the dynamical behavior of the system and its effect on tunneling. Level splittings
for the ground states of the normal and deuterated species were calculated. We also studied the sensitivity of
the splittings to the choice of tunneling path. Mode-selective excitations were used to study the effect of
vibrational excitation on the tunneling. It is found that some modes promote tunneling, some suppress it, and
some do not affect it. This demonstrates the multidimensional nature of the tunneling process and the importance
of properly treating heavy-atom motions.

1. Introduction

This is a continuation of a series of studies1-7 of tunneling
effects in multidimensional sytems by using semiclassical
methods that incorporate tunneling into standard classical
trajectory simulations. The approach is practical for large
systems where full quantum-mechanical solutions are not
feasible. It also provides clear insight into the dynamical nature
of the tunneling effects since the full-dimensional classical
dynamics are explicitly treated. The basic idea is that classical
trajectories are initiated in the usual quasiclassical way and
propagated in the classically allowed regions of phase space,
with tunneling probabilities computed at turning points along
some predefined tunneling direction. The rate coefficient or
energy level splitting is calculated by averaging over an
ensemble of trajectories corresponding to a specified quantum
state.

Our recent study of the collinear H+ H2 atom-exchange
reaction shows that this simple approach is quite accurate for
small systems.7 The calculated H+ H2 reaction probabilities
are in good agreement with the quantum-mechanical values and
are in fact as good as the results obtained from more sophis-
ticated semiclassical methods such asS-matrix theory8 and the
instanton model.9 For large systems, where quantum mechanical
calculations are not feasible and thus semiclassical methods are
most useful, comparisons can only be made with experimental
data. Calculations of the ground-state splittings in several
isotopomers of malonaldehyde4 and methylmalonaldehyde,6 for
which all the vibrational degrees of freedom were included,
indicate that the method may be accurate in many-atom systems
as well. The computed splittings agree with the experimental
values to within a factor of 2.

The main purpose of this study is to further investigate and
test this semiclassical approach. The isomerization of tropolone

(see Figure 1) presents an interesting case because of the
availability of a large body of experimental data.10-19 In
addition to the vibrational ground-state splittings in the ground
and first-excited electronic states (X and A˜ ), some splittings of
vibrationally excited states have been measured for the A˜ state.
The most interesting (but not surprising) finding is that tunneling
strongly depends on the level of the excitation and the character
of the mode; some modes promote tunneling, some suppress it,
and some do not affect it. This clearly demonstrates the effects
of multidimensional dynamics on the hydrogen-atom transfer
process and in particular the importance of properly treating
the heavy-atom motions. There are already a number of
theoretical studies of tunneling in tropolone,20-24 none of which
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Figure 1. Schematic illustration of tropolone molecular structure and
the atom-numbering scheme used in this work.
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explicitly treat the full-dimensional dynamics. Since our
semiclassical approach allows for explicit treatment of the full-
dimensional classical dynamics, it should provide greater insight
into the tunneling mechanism in tropolone.

The observed tunneling splittings of the vibrationally excited
levels are for the A˜ state. However, it is difficult to perform
reliable ab initio calculations for an electronically excited state.
We therefore constructed a potential-energy surface for the X
state on the basis of ab initio calculations and used it in the
tunneling calculations. Since it is reasonable to expect that
many of the modes that significantly affect tunneling are similar
for the X and Ãstates, the experimental data for the A˜ state of
tropolone may be qualitatively interpreted from theoretical
calculations for the X state.

2. Computational Methods

A. Potential-Energy Surface. The potential-energy surface
used in this study is based on the results of ab initio calculations.
The GAUSSIAN 92 programs were used to compute the
geometries and energies of the equilibrium and transition-state
structures for the ground electronic state at the MP2/6-31G**
level. Normal-mode analyses were performed to verify the
curvature at these stationary points, and frequencies for several
additional isotopomers were computed and used in fitting the
force field parameters. The calculated equilibrium structure is
shown in Figure 1, and the values of the internal coordinates
are given in Table 1.

Our goal is to treat the symmetric double-well tunneling
dynamics of tropolone. Thus, the required potential-energy
surface must describe the forces for geometries far removed
from equilibrium, at least along the reaction coordinate for
tautomerization. Moreover, the potential-energy surface must
be symmetric with respect to hydrogen transfer and realistically
describe the barrier to that process. To do this, we write the
potential-energy surface as

where VA and VB are the equilibrium force field potentials
corresponding to the two symmetric isomers, expressed in terms
of valence internal coordinates, andS1(R) is a switching function,

that smoothly varies from zero to unity as a function of the
reaction coordinateR) rOH - rO‚‚‚H, i.e., the difference between
the two OH bond lengths. The purpose ofS1(R) is to
continuously vary the contributions ofVA andVB to the potential
energy depending on whether the system is near the equilibrium
geometry of well A (S1(R) f 1), that of well B (S1(R) f 0), or
somewhere between (S1(R) f 1/2; i.e., transition statelike
configurations).

The potentialsVA and VB are written as a sum of Morse
functions for the bond stretches, harmonic oscillators for the
in-plane angle-bending and out-of-plane wag angle-bending
terms, six-term cosine series for the dihedral angles, and
harmonic bond-bond, angle-angle, and bond-angle interaction
terms:

A second switching functionS2(R) is used to adjust the width
and height of the barrier to hydrogen transfer. It acts on the
force constants for the harmonic in-plane bending potentials and
on the Morse curvature parameter,R, for the O-H and O‚‚‚H
bonds. The form ofS2(R) is

whereR is defined above. The values of the parameters in the
switching functions were taken to bea ) 3.5 Å-1, b ) 0.28,
andc ) 25.0 Å-4.

Cross-terms can give rise to spurious minima in a potential-
energy surface for geometries far from equilibrium and could
potentially present a problem here due to the sizable zero-point
energy of tropolone (∼73 kcal/mol). However, we found no
evidence of problems in the dynamics calculations considered
in this work.

The values of the force field parameters were determined by
adjusting them to minimize the sum of the squares of the
differences between the values of the frequencies calculated
using eq 1 and the ab initio values. The ab initio values were
not scaled. The parent compound plus two additional isoto-
pomers were considered in the fitting of the equilibrium force
field to the ab initio results. The switching function parameters
were adjusted to yield the desired barrier subject to the constraint
that the switching functions have negligible effect at the
equilibrium geometries. The values of the force field parameters
are given in Table 1.

Equilibrium normal-mode frequencies for each of the three
species used in fitting the force field are compared to the ab
initio results in Table 2. Results for two additional isotopomers
that were not used in determining the force field are given in
Table 3. A satisfactory fit was obtained for all cases, including
those that were not explicitly considered in the parametrization
of the force field.

The barrier to H-atom transfer in the X state of tropolone is
not known from experimental measurements. However, there
are a number of calculations of it. The values range from 2.9
to 15.7 kcal/mol, depending on the level of theory.24 Given this
uncertainty, we have taken the pragmatic approach of arbitrarily
adjusting the barrier height to yield a ground-state eigenvalue
splitting in agreement with the experimental result for the parent
compound and then using that barrier in subsequent calculations
of the ground-state splitting for partially deuterated tropolone
and for various mode-selective excitations. These latter results
are then compared, insofar as is possible, to experimental data
in order to assess the accuracy of the potential-energy surface
and semiclassical approach. The classical barrier height is taken
to be 16.0 kcal/mol in all of the calculations. This is near the
value obtained at the HF/6-31G** level (15.7 kcal/mol)24 and
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TABLE 1: Potential-Energy Surface Parameters

Equilibrium Bond Lengths and Morse Potential Parameters

bonda r0 (Å) R (Å-1) De (kcal/mol) bonda r0 (Å) R (Å-1) De (kcal/mol)

C1-C2 1.472 527 2.161 93 84.0 C2-O9 1.339 555 2.548 67 87.0
C2dC3 1.382 982 1.925 12 146.0 O9-H10 0.991 455 2.264 70 90.0
C3-C4 1.406 940 2.241 68 84.0 C3-H11 1.083 782 1.918 36 112.0
C4dC5 1.381 980 2.039 98 146.0 C4-H12 1.084 236 1.899 33 112.0
C5-C6 1.413 074 2.140 21 84.0 C5-H13 1.083 191 1.931 30 112.0
C6dC7 1.376 725 2.114 93 146.0 C6-H14 1.084 893 1.918 50 112.0
C1-C7 1.437 269 2.374 92 84.0 C7-H15 1.084 011 1.921 72 112.0
C1dO8 1.260 559 1.827 46 193.0 O8‚‚‚H10 1.791 032 1.004 07 10.0

Equilibrium Bend Angles and Harmonic Bending Force Constants

angle θ0 (deg) k (kcal mol-1 rad-2) angle θ0 (deg) k (kcal mol-1 rad-2) angle θ0 (deg) k (kcal mol-1 rad-2)

C1C2C3 130.3182 70.617 H12C4C5 115.9190 79.387 C6C7H15 117.2418 73.760
C1C2O9 111.4789 67.418 C4C5C6 127.7453 136.709 H15C7C1 112.2990 76.698
O9C2C3 118.2029 217.540 C4C5H13 116.3195 94.951 C7C1C2 123.2725 47.543
C2C3C4 128.9406 152.684 H13C5C6 115.9352 77.102 C7C1O8 121.6887 278.186
C2C3H11 114.0098 88.797 C5C6C7 130.1077 119.638 O8C1C2 115.0388 91.651
H11C3C4 117.0496 75.439 C5C6H14 115.0853 97.194 C2O9H10 101.9229 61.524
C3C4C5 129.1564 194.822 H14C6 C7 114.8069 77.963 O9H10O8 125.3106 52.315
C3C4H12 114.9246 76.049 C6C7C1 130.4592 148.872 C1O8H10 86.2489 33.662

Wag Angle Bending Interactions

wag angle γ0 (deg) kγ (kcal mol-1 rad-2) wag angle γ0 (deg) kγ (kcal mol-1 rad-2) wag angle γ0 (deg) kγ (kcal mol-1 rad-2)

C7C1C2 O8 0.0 9.341 C3C4C5 H12 0.0 8.435 C5C6C7 H14 0.0 10.662
C1C2C3 O9 0.0 80.032 C4C5C6 H13 0.0 3.573 C6C7C1 H15 0.0 25.229
C2C3C4 H11 0.0 1.075

Dihedral Angle Interactions (kcal/mol)

dihedral angle τ0 (deg) a0 a2 a4 dihedral angle τ0 (deg) a0 a2 a4 dihedral angle τ0 (deg) a0 a2 a4

H10O9C2C3 180.0 20.543 42 -23.060 90 2.517 47 O9C2C3C4 180.0 20.395 80 -23.060 90 2.665 10 H13C5C6C7 180.0 19.861 30 -23.060 90 3.199 60
C3C4C5C6 0.0 17.494 72 -23.060 90 5.566 17 O8C1C2C3 180.0 19.877 53 -23.060 90 3.183 37 H14C6C7C1 180.0 19.913 38 -23.060 90 3.147 52
C4C5C6C7 0.0 18.522 60 -23.060 90 4.538 30 H11C3C4C5 180.0 18.773 05 -23.060 90 4.287 85 H15C7C1C2 180.0 19.211 93 -23.060 90 3.848 97
C7C1C2C3 0.0 17.328 62 -23.060 90 5.732 28 H12C4C5C6 180.0 20.457 53 -23.060 90 2.603 37

Bond-Bond Interaction Force Constants (kcal mol-1 Å-2)

bondi bondj kri ,rj bondi bondj kri ,rj bondi bondj kri ,rj

C1-C2 C2dC3 106.169 C4dC5 C5-C6 22.703 C2dC3 C2-O9 43.898
C2dC3 C3-C4 32.689 C5-C6 C6dC7 87.819 C1-C2 C1dO8 36.310
C3-C4 C4dC5 113.367 C6dC7 C1-C7 101.602 C1-C7 C1dO8 65.390

Angle-Angle Interaction Force Constants (kcal mol-1 rad-2)

anglei anglej kθi,θj anglei anglej kθi,θj anglei anglej kθi,θj

H11C3C4 C3C4H12 -12.141 C3C4C5 C4C5H13 26.574 C6C7C1 H14C6C7 8.895
H13C5C6 C5C6H14 -1.398 C4C5C6 H12C4C5 15.201 H12C4C5 C4C5H13 7.640
C1C2C3 C2C3H11 22.284 C5C6C7 C6C7H15 20.319 H14C6C7 C6C7H15 9.169

5042
J.

P
h

ys.
C

h
e

m
.

A
,

V
o

l.
1

0
2

,
N

o
.

2
6

,
1

9
9

8
G

uo
et

al.



is close to the barrier used by Smedarchina et al.24 in calculations
of the splittings in tropolone based on an instanton model. We
note that a high barrier close to that obtained from SCF
calculations was also used in our studies2,4 of malonaldehyde
(which has a similar structure to tropolone) and in the instanton
treatment of malonaldehyde reported by Smedarchina et al.,25

and the calculated splittings are in good agreement with
experiments for the parent compound as well as several
isotopomers. Moreover, Smedarchina et al.24 considered several
different levels of theory including AM1, MP2, and two density
functional treatments in calculations of the barrier height for
tropolone and found that all of the “higher” levels of theory
predicted barriers that were entirely too low to yield a reasonable
zero-point energy splitting.

B. Semiclassical Tunneling Model. Semiclassically, the
action variables are the classical analogues of the quantum
numbers. A wave function for a specified quantum state is
represented by an ensemble of classical trajectories that lie on
a KAM (Kolmogoroff-Arnold-Moser) invariant torus, with
the action integrals quantized according to the EBK (Einstein-
Brillouin-Keller) quantization condition,26

whereCj is a closed loop on the torus,nj is the quantum number,
and âj is the Maslov index. For a symmetric double-well
system, any torus corresponding to a given state on one side of
the barrier has an equivalent (mirror image) torus on the other
side. Tunneling between the tori can be treated with the
Feynman path integral formalism.27 In the path integral, the
amplitude for a particle of energyE taking a particular pathP
on a potentialV is proportional to exp(iSP/p), whereSP is the
classical action alongP. The total amplitude is the sum of these
terms for all paths connecting the two end points. For tunneling
processes the actionSP is imaginary, and thus the tunneling
amplitude is exponentially damped. Hence, the amplitude sum
is dominated by contributions from regions near the paths which
minimize the action. These paths are trajectories in imaginary
time which satisfy the classical equations of motion in the
“upside-down” potential.28 The crucial point in treating tun-
neling is to find these classical paths which connect the two
tori associated with the specified quantum state. However,
solving Hamilton’s equations in the tunneling region is very
difficult for multidimensional systems, and approximate ap-
proaches are often used instead.

Since the motion of the migrating hydrogen atom is faster
than that of the other degrees of freedom, we will focus on the
sudden approximation. Under this approximation, the wave
functions can be separated as

wherei denotes the left or right wells,s represents the tunneling
coordinate, andR denotes the other degrees of freedom. In a
simple quantum mechanical two-state problem, the energy level
splitting is given by the matrix element

where L and R denote the left and right wells, and
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is the tunneling splitting in thes direction for a fixed value of
R. Thus, the total energy level splitting can be obtained by
calculating the one-dimensional splitting∆E(R) in thesdirection
for every parametric value ofR and then averaging overR. In
a quasiclassical trajectory simulation, this averaging is performed
by using an ensemble of trajectories with random initial
vibrational phases. Within the framework of the WKB ap-
proximation, the semiclassical expression for the energy splitting
in a one-dimensional symmetric double well is given by29

whereν is the frequency of the oscillator at total energyE0 and
θ is the usual WKB barrier penetration integral

The limits of the integral are the classical turning points on the
two sides of the barrier, corresponding to energyE ) E0.

A semiclassical method that incorporates the preceding into
classical trajectory simulations can be formulated as follows.
A trajectory is initiated in one of the wells and propagated in
the classically allowed region of phase space. Each time a
turning point occurs, i.e., the component of the momentum of
the tunneling particle along thesdirection is zero, an amplitude
factore-θ is computed with all of the other degrees of freedom

frozen. The tunneling splitting is given by30

whereS(t) is the accumulated amplitude factor

Here,tn are the times that a trajectory is at turning points along
s, andh(x) is the usual step function which is 1 ifx > 0 and 0
if x < 0. The bracket implies an ensemble average over the
initial vibrational phases. Typical plots of〈S(t)〉, from which
the splitting is derived by way of eq 11 are shown in Figure 2
for the ground states of the normal (panel a) and deuterated
(panel b) species. The reader should note that, up to this point,
the approach we have described is equivalent to that presented
by Makri and Miller.30

It should be emphasized that〈S(t)〉 is not the total tunneling
amplitude as a function of time; that is, the semiclassical method
is not an analogue of a time-dependent quantum mechanical
calculation in which a state initially localized in one of the wells
is propagated and the probability amplitude of the system being
in the other well is computed as a function of time. Calculating
〈S(t)〉 is merely a way to obtain the level splitting given by eq
7.

TABLE 2: Calculated and ab Initio Normal-Mode Frequencies (cm-1) for the Three Isotopomers of Tropolone Used in
Parametrizing the Force Field

parent compound 13C1
18O8

2H10
2H10

2H12
2H14-15

this work ab initio this work ab initio this work ab initiomode

7 106 A′′ 105 A′′ 104 A′′ 103 A′′ 101 A′′ 101 A′′
8 174 A′′ 174 A′′ 171 A′′ 172 A′′ 167 A′′ 169 A′′
9 353 A′ 356 A′ 341 A′′ 347 A′′ 331 A′′ 332 A′′

10 354 A′′ 351 A′′ 347 A′ 337 A′ 347 A′ 341 A′
11 376 A′ 370 A′ 360 A′ 360 A′ 362 A′′ 353 A′′
12 386 A′′ 385 A′′ 379 A′′ 382 A′′ 369 A′ 360 A′
13 445 A′ 446 A′ 440 A′ 435 A′ 437 A′ 437 A′
14 536 A′′ 524 A′′ 518 A′′ 523 A′′ 494 A′′ 503 A′′
15 546 A′ 547 A′ 532 A′ 533 A′ 531 A′ 529 A′
16 639 A′′ 641 A′′ 598 A′′ 593 A′′ 582 A′′ 591 A′′
17 710 A′ 706 A′ 648 A′′ 629 A′′ 609 A′′ 610 A′′
18 733 A′′ 757 A′′ 703 A′ 700 A′ 660 A′′ 660 A′′
19 761 A′ 759 A′ 748 A′ 744 A′ 681 A′ 680 A′
20 786 A′′ 807 A′′ 775 A′′ 755 A′′ 708 A′′ 703 A′′
21 849 A′′ 850 A′′ 843 A′′ 841 A′′ 743 A′ 743 A′
22 913 A′ 899 A′ 902 A′′ 913 A′′ 759 A′′ 761 A′′
23 920 A′′ 914 A′′ 909 A′ 897 A′ 800 A′ 832 A′
24 952 A′′ 943 A′′ 935 A′′ 943 A′′ 864 A′′ 863 A′′
25 985 A′′ 977 A′′ 961 A′′ 977 A′′ 870 A′ 881 A′
26 988 A′ 990 A′ 985 A′ 977 A′ 915 A′′ 903 A′′
27 1106 A′ 1094 A′ 1044 A′ 1012 A′ 935 A′ 922 A′
28 1257 A′ 1261 A′ 1110 A′ 1129 A′ 992 A′ 971 A′
29 1280 A′ 1263 A′ 1259 A′ 1253 A′ 1049 A′ 1052 A′
30 1313 A′ 1302 A′ 1284 A′ 1278 A′ 1121 A′ 1140 A′
31 1351 A′ 1344 A′ 1305 A′ 1305 A′ 1192 A′ 1185 A′
32 1416 A′ 1379 A′ 1360 A′ 1371 A′ 1332 A′ 1324 A′
33 1467 A′ 1474 A′ 1422 A′ 1450 A′ 1363 A′ 1365 A′
34 1485 A′ 1497 A′ 1481 A′ 1474 A′ 1452 A′ 1450 A′
35 1552 A′ 1552 A′ 1514 A′ 1527 A′ 1532 A′ 1516 A′
36 1593 A′ 1597 A′ 1587 A′ 1585 A′ 1588 A′ 1587 A′
37 1635 A′ 1641 A′ 1611 A′ 1603 A′ 1615 A′ 1606 A′
38 1672 A′ 1677 A′ 1665 A′ 1672 A′ 1654 A′ 1660 A′
39 1710 A′ 1717 A′ 1686 A′ 1695 A′ 1696 A′ 1699 A′
40 3217 A′ 3232 A′ 2494 A′ 2496 A′ 2400 A′ 2385 A′
41 3245 A′ 3240 A′ 3217 A′ 3232 A′ 2409 A′ 2397 A′
42 3246 A′ 3257 A′ 3245 A′ 3240 A′ 2417 A′ 2410 A′
43 3251 A′ 3260 A′ 3246 A′ 3257 A′ 2494 A′ 2496 A′
44 3264 A′ 3266 A′ 3251 A′ 3260 A′ 3246 A′ 3256 A′
45 3426 A′ 3432 A′ 3264 A′ 3266 A′ 3264 A′ 3258 A′

∆E ) 2pν exp(-θ) (9)

θ ) 1
p
Im∫ps ds ) 1

p
∫s<

s>
[2m[V(s) - E0]]

1/2 ds (10)

∆E ) 2p
d
dt

〈S(t)〉 (11)

S(t) ) ∑h(t - tn)e
-θn (12)
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It is important to appreciate this to properly determine the action
integral. Note that the two wave functionsΨL(s,R) andΨR(s,R)
in eq 7 are associated with two identical tori that are mirror
images of each other. Thus, the tunneling path connecting the
two tori should be symmetric in thefull-dimensionalspace,
which means that the positions of all the atoms have to be
symmetrically reflected as the H-atom goes from one well to
another during calculation of the action integral. This cannot
be accomplished for many-atom systems by using a strict sudden
approximation such as that proposed by Makri and Miller,30

because the barrier to the H-atom motion would not be
symmetric except at the transition state if all the degrees of
freedom except the tunneling one(s) were held fixed during the
tunneling process. This is illustrated in Figure 3. Frame a of
Figure 3 depicts the actual potential along the tunneling direction
with all of the other degrees of freedom frozen. Since the
motion is followed classically in only one well, a typical barrier
to the hydrogen atom transfer will not reflect the mirror image
configuration of the molecule; i.e., the potential will not be
symmetric along the tunneling coordinate. Thus, in the calcula-
tion of the action integrals, we employ the sudden approximation
to obtain the potential in only the reactant well and then assume
it is symmetric on the other side. In other words, the tunneling
probability is determined by assuming a symmetric potential,
as illustrated in Figure 3b.

We evaluate the action integral from the inner turning point
s< to the pointssym that lies in the plane separating the two
wells, and then multiply the result by 2:

The point ssym corresponds torOH ) rO‚‚‚H. The conjugate
momentumps in eq 13 can be obtained by using energy
conservation along the tunneling path

wheretn is the time that a trajectory is at turning pointn. Under
the sudden approximation,R and PR are held fixed during
calculation of the action integral. Moreover,ps(tn) ) 0 at a
turning point. Hence, the action integral can be written as

One of the central issues of the method is the specification
of the tunneling paths. In the sudden limit, the tunneling path
is a straight line through the barrier separating the two wells.
Thus, we have chosen straight-line paths parallel to the
equilibrium O-O distance vector. We have also investigated
other paths that deviate somewhat from straight lines. The
results discussed below indicate that the straight-line paths are
the best choice for this system.

TABLE 3: Comparison of Calculated and ab Initio
Normal-Mode Frequencies (cm-1) for Two Isotopomers of
Tropolone Not Used in Parametrizing the Force Field

2H10
18O8

this work ab initio this work ab initiomode

7 105 A′′ 105 A′′ 105 A′′ 103 A′′
8 174 A′′ 172 A′′ 172 A′′ 174 A′′
9 348 A′′ 351 A′′ 350 A′ 351 A′

10 349 A′ 343 A′ 352 A′′ 350 A′′
11 370 A′ 365 A′ 366 A′ 366 A′
12 383 A′′ 384 A′′ 385 A′′ 385 A′′
13 442 A′ 440 A′ 444 A′ 442 A′
14 519 A′′ 523 A′′ 535 A′ 538 A′
15 544 A′ 544 A′ 535 A′′ 524 A′′
16 599 A′′ 594 A′′ 639 A′′ 640 A′′
17 649 A′′ 641 A′′ 709 A′ 703 A′
18 706 A′ 705 A′ 733 A′′ 757 A′′
19 761 A′ 755 A′ 749 A′ 750 A′
20 775 A′′ 758 A′′ 786 A′′ 807 A′′
21 843 A′′ 842 A′′ 849 A′′ 850 A′′
22 905 A′′ 914 A′′ 912 A′ 899 A′
23 910 A′ 899 A′ 920 A′′ 914 A′′
24 935 A′′ 943 A′′ 952 A′′ 943 A′′
25 962 A′′ 977 A′′ 985 A′′ 977 A′′
26 987 A′ 978 A′ 988 A′ 989 A′
27 1045 A′ 1014 A′ 1106 A′ 1093 A′
28 1111 A′ 1133 A′ 1257 A′ 1261 A′
29 1259 A′ 1262 A′ 1280 A′ 1262 A′
30 1286 A′ 1278 A′ 1312 A′ 1302 A′
31 1317 A′ 1312 A′ 1350 A′ 1343 A′
32 1365 A′ 1372 A′ 1413 A′ 1379 A′
33 1432 A′ 1457 A′ 1466 A′ 1471 A′
34 1482 A′ 1486 A′ 1484 A′ 1497 A′
35 1551 A′ 1546 A′ 1540 A′ 1546 A′
36 1593 A′ 1595 A′ 1593 A′ 1592 A′
37 1631 A′ 1630 A′ 1627 A′ 1633 A′
38 1670 A′ 1674 A′ 1671 A′ 1677 A′
39 1701 A′ 1710 A′ 1710 A′ 1710 A′
40 2494 A′ 2496 A′ 3217 A′ 3232 A′
41 3217 A′ 3232 A′ 3245 A′ 3240 A′
42 3245 A′ 3240 A′ 3246 A′ 3257 A′
43 3246 A′ 3257 A′ 3251 A′ 3260 A′
44 3251 A′ 3260 A′ 3264 A′ 3266 A′
45 3264 A′ 3266 A′ 3426 A′ 3432 A′

Figure 2. Plots of tunneling amplitude factor versus time. Results are
for the ground states of the normal (panel a) and deuterated (panel b;
the migrating hydrogen is substituted with deuterium) species.

θ ) 2
p
Im∫s<

ssymps ds (13)

ps
2

2m
+

PR
2

2µ
+ V(s, R) )

ps
2(tn)

2m
+

PR
2(tn)

2µ
+ V(s, R)|tn (14)

θ ) 2
p
Im∫s<

ssymps ds ) 2
p
∫s<

ssym[2m{V(s, R) - V(s, R)|tn}]1/2 ds

(15)
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C. Details of Trajectory Calculations. To rigorously
describe semiclassical tunneling from a given quantum state,
one should choose the classical trajectories that lie on the
invariant torus corresponding to the quantum state of interest.
This could be accomplished in principle by using adiabatic
switching,31 where a time-dependent Hamiltonian is used to
slowly transform the Hamiltonian from a simple zero-order form
to the actual one of interest. This is, however, a nontrivial task
for a complicated multidimensional system. We instead use
quasiclassical normal-mode sampling.32 Initial conditions were
chosen from the quantum torus of the zero-order (harmonic)
Hamiltonian with the action angles randomly selected in the
interval (0,2π), after which the coordinates and momenta were
scaled to give the desired total energy. Although this method
gives mode-selective rather than state-selective initial conditions,
it is probably good enough for the low energies considered here.

Ensembles of 2500 classical trajectories were used for each
set of initial conditions. The angular momentum was zero in
all calculations. The trajectories were integrated in a lab fixed
Cartesian coordinate system by using a fourth-order Runge-
Kutta-Gill integrator with a fixed stepsize of 3× 10-17 s. The
length of the individual trajectories was 0.05 ps, and there were
about four turning points observed for each trajectory. The short
run time was used to ensure that the initial state remains almost
unchanged, since the eigenvalue splitting is associated with time-
independent eigenstates of the Hamiltonian. It is well-known
that the classical trajectory method is often inaccurate for
describing long-time dynamics of polyatomic systems. Thus,
we have used a short run time (0.05 ps, which is about 2 orders

of magnitude smaller than that usually used in reaction dynamics
studies) so that the trajectory simulations approximate stationary
eigenstates, and the problems associated with long classical
trajectories (such as the aphysical flow of the zero-point
energy32) should not be significant.

3. Results and Discussion

The main motivation of this study was to further illustrate
and test the semiclassical method we have been using for treating
tunneling. We calculated the level splittings for the ground
states of the normal and deuterated forms of tropolone. We
also studied the sensitivity of the splitting to the choice of the
tunneling path. Finally, we did a series of calculations for initial
conditions corresponding to mode-selective excitations to
investigate the effects of vibrational excitations on tunneling.

A. Vibrational Ground State. The calculated splittings for
the ground states of the normal and deuterated (the migrating
hydrogen is substituted with deuterium) species are given in
the first row of Table 4, along with the corresponding

Figure 3. Illustration of the potential energy along the reaction
coordinate. (a) The potential is asymmetric if a strict sudden ap-
proximation is used. (b) In calculation of the tunneling integral, the
sudden approximation is employed to obtain the potential up to the
midpoint and then assumed to be symmetric on the other side.

TABLE 4: Calculated Tunneling Splittings for the X̃ State
and the Measured Splittings for the Ã State

obsd freqa (cm-1) splittingsb (cm-1)
vibrational

mode X̃state Ãstate exptc this work

ground state (H) X˜ 0.97 0.97
ground state (D) X˜ 0.0 0.01
ground state (H) A˜ 20
ground state (D) A˜ 2
7 110 39 11 (8) 0.83 (0.77)
8 177 171 8 (5) 0.90 (0.74)
9 349 1.3
10 271 269 (10) 0.98 (1.0)
11 359 296 31 2.7
12 335 0.88
13 434 414 33 1.2
14 676 0.87
15 551 1.1
16 720 1.0
17 751 0.98
18 674 640 18 1.3
19 741 511 14 1.0
20 774 1.1
21 828 1.1
22 908 1.0
23 875 1.0
24 983 1.1
25 1000 1.4
26 989 1.0
27 1146 1.1
28 1252 1.2
29 1274 1.2
30 1412 1.2
31 1427 1.1
32 1460 2.2
33 1470 2.6
34 1481 1.5
35 1499 1.3
36 1522 1.0
37 1565 1.3
38 1628 1.2
39 1635 1.1
40 3006 1.0
41 3023 0.97
42 3030 0.91
43 3055 0.95
44 3055 0.94
45 3121 31.1

a Taken from Takada and Nakamura.23 b Numbers given in paren-
theses are the splittings for the second vibrationally excited states.
c Taken from Takada and Nakamura23 and Smedarchina et al.24
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experimental results. It should be noted again that since the
barrier height is not accurately known for this system, the
splitting for the ground state of the normal species was obtained
by adjusting the barrier height to obtain agreement with the
measured splitting. The agreement between the experimental
and calculated splittings for the deuterated species indicates that
the barrier height (16.0 kcal/mol) thus determined is probably
reasonable. This value is close to that (15.7 kcal/mol) predicted
by using the HF/6-31G** basis set. A barrier height close to
the one obtained at the Hartree-Fock level was also used in
our earlier study of malonaldehyde4 (which is structurally similar
to tropolone), and the calculated splittings are in good accord
with experiments. This suggests that an accurate treatment of
tunneling can provide direct, quantitative information about the
barrier.

To check the precision of our calculations, we computed the
ground-state splitting for four independent trajectory ensembles.
The results are 0.94, 0.96, 0.97, and 1.00 cm-1. The average
reported in Table 4 is 0.97 cm-1, and the standard deviation is
0.025 cm-1. Thus, statistical errors in the calculations are not
significant.

The results given in Table 4 were obtained by using straight-
line paths parallel to the O-O direction in the equilibrium
structure. Other paths, chosen to be two-piece straight lines
that are symmetric with respect to the plane separating the two
wells (see Figure 4), were also tested. These paths and straight
lines along the equilibrium O-O direction form isosceles
triangles. The calculated splittings are given in Table 5. Here
φ is the angle between the equilibrium O-O distance vector
and the specified tunneling direction. Theφ ) 0 case is one of
the four ensembles used in the calculation of the ground-state
splitting. The same ensemble of classical trajectories was used
in the calculations for all of the other values ofφ to ensure that
the statistical errors have no qualitative effect. The tunneling
integral was computed each time the component of the
momentum of the migrating hydrogen atom along the tunneling
direction (defined byφ) became zero. It is clear from Table 5

that the simple straight-line paths yield the largest splitting
(smallest action). However, the computed splitting is not very
sensitive to variations in path, which is reasonable since it is a
result averaged over multidimensional space.

B. Vibrationally Excited States. The tunneling splittings
of several vibrationally excited states have been measured for
the first electronically excited state A˜ 1 B2.15-19 The most
interesting finding is that some modes promote tunneling, some
suppress it, and some do not affect it. This clearly demonstrates
the effects of multidimensional dynamics on the tunneling
process and the importance of properly treating the motions of
skeletal atoms.

To investigate the effects of vibrational excitation on tun-
neling, we calculated the tunneling splittings for the X state
with initial conditions where each normal mode was first
assigned zero-point energy and then a selected normal mode
was assigned an additional one or two quanta of energy. This
was done for each of the 39 normal modes. The results are
given in Table 4, together with the available experimental data
for the Ã state.

Comparing the respective ground-state splittings with the
computed and observed splittings in the low-frequency regime
where the experimental data are available, it appears that many
of the modes that significantly enhance (or suppress) the ground-
state tunneling are similar for the X and A˜ states. That is,
although one cannot compare directly the tunneling splittings
for analogous mode-specific excitations on the X and A˜ states
(they differ by approximately an order of magnitude), there is
a fairly good correlation between the relative effects of selective
excitation of mode “i” on the calculated splittings in the ground
state and the corresponding effects of that same mode on the
splitting measured for the first electronic excited state. This
suggests that many of the data for the A˜ state of tropolone may
be qualitatively interpreted from the theoretical calculations for
the X state.

It is obvious (see Tables 2 and 4) that all the normal modes
which, when excited, give rise to smaller splittings than that of
the ground state are out-of-plane modes. The fact that out-of-
plane motions suppress tunneling was also observed for mal-
onaldehyde.4 The most plausible explanation for this is that
the out-of-plane motions tend to increase the effective height
and width of the barrier to tunneling. For example, excitation
of the lowest frequency mode (105 cm-1), which yields the
largest out-of-plane “scissoring” motion of the two oxygen
atoms, results in a reduced splitting (0.83 cm-1). This was
explicitly discussed in ref 4.

The highest splitting (31.2 cm-1) results from excitation of
the O-H stretching mode (mode 45). This is not surprising
since the excitation of O-H assigns energy directly to the
tunneling coordinate. Relatively large splittings are also
observed for excitations of modes 11 (O-O in-plane motion),
32 (HOC bend), and 33 (O-H stretch, OdC1-C2 bend).

In general, excitation of modes that involve motions of the
migrating H atom or the two oxygens have significant effects
on tunneling. Whether tunneling is suppressed or enhanced
depends on the character of the excited mode. Excitations of
the modes that are due mainly to C-H stretching (modes 40-
44) have negligible effect on the splitting. Intermediate effects
on the splittings are obtained for excitations of most of the other
modes.

4. Conclusions

We have investigated tunneling effects in tropolone by using
a semiclassical method that we have described previously.4 Since

Figure 4. Illustration of the tunneling paths used in this study.

TABLE 5: Computed Ground-State Splitting for Different
Tunneling Pathsa

φ (deg)
tunneling

splitting (cm-1) φ (deg)
tunneling

splitting (cm-1)

-15 0.84 0 0.96
-10 0.92 5 0.92
-5 0.96 10 0.84
-2 0.96 15 0.73

a The case ofφ ) 0 corresponds to straight-line paths.
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the method includes tunneling calculations in standard trajectory
simulations, we are able to explicitly treat all 39 vibrational
degrees of freedom and thus investigate the effects of multidi-
mensional classical dynamics on hydrogen-atom tunneling in
this large polyatomic molecule.

The potential-energy surface is largely based on ab initio
information. The barrier to classical isomerization on the
potential-energy surface is 16.0 kcal/mol, a value close to that
obtained from HF/6-31G** calculations. This barrier was
obtained by fitting the calculated ground-state splitting in the
normal species to the experimental value. Using this barrier,
the calculated ground-state splitting in the deuterated species
is in good accord with experiment. This suggests that the
treatment of tunneling may be useful for determining barriers.

We have also examined alternative tunneling paths. They
were chosen to be two-piece straight lines that are symmetric
with respect to the plane separating the two wells (see Figure
4). These paths and straight lines along the equilibrium O-O
direction form isosceles triangles. We found that simple
straight-line paths yield the largest splitting. However, the
computed splitting is not very sensitive to variations in path,
which is reasonable because the splitting is a result averaged
over multidimensional space.

The effects of vibrational excitations on the tunneling were
investigated by performing a series of calculations for initial
conditions corresponding to mode-selective excitations. Al-
though the calculations were carried out for the ground electronic
state (X) while all of the measured splittings of the vibrationally
excited states are for the first electronically excited state (A˜ ),
comparisons of the calculated and observed splittings indicate
that many of the modes that significantly affect tunneling are
similar for the X and Ãstates. Thus, many of the data for the
Ã state may be qualitatively interpreted from calculations for
the X state. We found that excitations of certain out-of-plane
modes suppress tunneling; in-plane modes that involve the
motions of the migrating H atom and the two oxygen atoms
(O-H stretch, HOC bend, and OdC1-C2 bend) significantly
enhance tunneling; and excitations of the rest of the modes have
negligible or limited effect on tunneling.
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